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Abstract The interaction of safranin O (SO) with double-
stranded calf thymus DNA was investigated electrochemi-
cally, using a DNA-modified glassy carbon (GC-DNA)
electrode. The results were compared with those obtained
using a bare GC electrode. The formal potential of SO was
more negative when using the GC-DNA electrode, al-
though the rate of heterogeneous electron transfer was not
altered. The GC-DNA electrode enabled preconcentration
of the SO on the electrode surface, despite the fact that the
mass transfer effects in the thin DNA layer adsorbed on the
surface were still observed. The diffusion coefficient of SO
and the binding ratio for the oxidized and reduced forms of
the bound species were obtained. A binding isotherm for
SO at the GC-DNA electrode was plotted from coulometric
titrations, giving a binding constant of 5.8×104 L mol−1.
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Introduction

DNA is an immensely important material that plays an
important role in life processes because it bears heritage
information and instructs the biological synthesis of
proteins and enzymes through the replication and transcrip-
tion of genetic information in living cells. Studies of
structure, binding specificity, mechanism, and dynamics of
the interaction of small molecules with double helical DNA
have attracted continuous interest in chemistry, physics, and
biology. DNA binding molecules regulate mechanisms
central to cellular function, including DNA replication and
gene expression, especially those functions related to gene
mutation, the origin of genetic diseases, and antitumor and
antiviral drug mechanisms, thereby influencing our under-
standing of how proteins recognize and bind to specific
DNA sequences [1, 2].

The binding of small molecules to DNA occurs through
three major modes [3, 4]: electrostatic interactions with the
negative-charged nucleic sugar–phosphate structure, bind-
ing interactions with the two grooves of the DNA double
helix, and intercalation between the stacked base pairs of
native DNA. The interactions between small molecules and
DNA have been widely studied using various spectroscopic
[5–10], calorimetric [11, 12], and electrochemical methods
[13–15]. Electrochemical studies of these interactions have
recently received a good deal of attention due to their low
cost and the use of simpler and smaller devices with respect
to the spectroscopic methods. On the other hand, the
interpretation of electrochemical data can help elucidate the
mechanisms by which drugs interact with DNA, similar to
that which occurs in vivo [16]. These have focused
primarily on the solution-phase phenomena, in which
DNA-induced changes in the redox potential and/or
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diffusion characteristics of molecules have been analyzed
[17, 18].

The applications of film electrodes are being investigated
intensively. Electrodes coated with a film of DNA, usually
in a solution/film/substrate arrangement, have been used in
the study of ligand–DNA interactions [14, 19–21]. Redox
reactions in the π-stack are particularly important for
understanding charge delocalizations in DNA and their
effect on base damage [22–24]. Meanwhile, recent photo-
chemical studies suggest that the extended DNA π-stack
facilitates long-range oxidative base damage [25].

Safranin O (SO) is a phenazine dye, which is similar to
other planar dyes with chemical structures classified in the
acridine, thiazine, and xanthene groups. Phenazine deriva-
tives are known to inhibit bacterial growth, and some
phenazium dyes have antimalarial potency [26]. Organic
dyes can also serve to probe the structures and functions of
biological macromolecules and are used to study some
biophysical processes [27], as well as to mediate the
electron transfer process in bioelectrocatalytic processes
[28]. Studies on the interaction between phenazines and
DNA may clarify the mechanism of biological activities of
these compounds at the biomolecular level. The interaction
of safranin T with DNA has been studied spectroscopically
[29, 30]; however, electrochemical studies of the mecha-
nism of the interaction between SO and DNA have not
appeared in the literature.

Following our recent studies on the interactions of DNA
with small molecules [11–14], electrochemical methods

have been applied to the study of the interaction between
SO and DNA.

Experimental

Double-stranded calf-thymus DNA (Sigma, St. Louis, MO,
USA) was dissolved in 0.05 M Tris–HCl buffer at pH 7.4.
Analytical grade HCl, SO, NaCl, and tris(hydroxymethyl)
aminomethane (Merck, Whitehouse Station, NJ, USA)
were used without further purification. All solutions were
prepared with double-distilled water.

Electrochemical studies were carried out using the
Autolab PGSTAT30 potentiostat/galvanostat (Eco Chemie,
Utrecht, The Netherlands) equipped with a 5-mL cell
incorporated three-electrode configuration containing
0.05 M Tris–HCl buffer (as the running electrolyte) at
pH 7.4, unless otherwise stated. The system was run by a
PC using GPES 4.9 software. In all voltammetric measure-
ments, the IR drop compensation was performed by
positive feedback. An Ag/AgCl (saturated KCl) electrode
and a glassy carbon (GC) electrode were used as reference
and counter electrodes, respectively. A GC disk electrode
(Metrohm, Herisau, Switzerland), 2 mm in diameter
(modified or otherwise), was used as a working electrode.
All studies were carried out at room temperature.

The GC electrode was polished with 0.05 μm α-alumina
powder on a piece of damp cotton wool. The electrode was
then rinsed thoroughly with doubly distilled water prior to

Fig. 1 Main panel: cyclic vol-
tammogram obtained using a
bare GC electrode: 200 μM SO
in 0.05 M Tris–HCl solution,
pH 7.4, potential range: 0 to
−700 mV, potential sweep rate
was 50 mV s−1. Inset: changes
in the reduction peak currents vs
the corresponding square root of
the potential sweep rate
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modification. Films of DNA were created on the GC
surface by transferring 5–7 μL of 0.5–1.0 mg mL−1 DNA
solution to the surface of the electrode, which was allowed
to dry under a warm flow of air (approximately 50 °C). The
modified electrode was transferred to the running electro-
lyte, and a potential of 1,300 mV was applied for 5 min,
followed by a sweeping of potential of 0 to 1,300 mV in a
regime of cyclic voltammetry, as pretreatment to obtain
reproducible results. The electrode, thus prepared, is
hereafter referred to as a GC-DNA electrode throughout
this report.

Potentiostatic chronocoulometric measurements were
carried out using the GC-DNA electrode in SO-containing
and SO-free solutions to obtain the values of capacitive
(double-layer) charges, faradaic charges (related to the
reduction of the adsorbed SO at the surface of the GC-
DNA electrode), and the Cottrellian component of the
transient currents. The potential was stepped from open
circuit to −615 mV, which is sufficiently negative to enforce
a mass transport-controlled current, for 100 s.

Results and discussion

Figure 1 represents a cyclic voltammogram of 200 μM SO
in the buffer solution using a bare GC electrode in the
potential range of 0 to −700 mV, with a potential sweep rate
of 50 mV s−1. SO underwent two redox transitions and was
reduced in the cathodic half cycle with current peak
positions at about −453 and −587 mV (denoted as c1 and
c2, respectively) and its oxidation reaction is represented by
two peaks at approximately −379 and −532 mV (denoted as
a1 and a2) in the anodic potential sweep. The voltammo-
gram is in good agreement with those previously reported
[31, 32]. The probable redox transitions can be represented
as follows:

In the voltammogram shown in Fig. 1, the formal
potential of second transition, E0′bulk, is about −540 mV
and the peak potential separation is 60 mV with a potential
sweep rate of 50 mV s−1 for the one-electron exchange
reaction, indicating fast charge transfer kinetics. As shown
in the inset of Fig. 1, for the cyclic voltammograms for SO
in buffer solution recorded at different potential sweep rates
at a bare GC electrode, the peak current c2 vs the
corresponding square root of the potential sweep rate gave
a linear plot. This indicates the occurrence of a mass
transport phenomenon via diffusion in the rate-limiting step
of the overall process. By using the slope of the plot, based
on the Randles–Sevcik equation [33], the diffusion coeffi-
cient of SO in aqueous solution is 7.11×10−6 cm2 s−1.

Figure 2 shows the selected consecutive cyclic volta-
mmograms of 200 μM SO in buffer solution using a GC-
DNA electrode with a potential sweep rate of 50 mV s−1.
The currents of both peaks appeared in the voltammograms,
confirming the oxidation and reduction of SO on the DNA-
modified surface.

Figure 3 shows the cyclic voltammogram of 200 μM SO
in the buffer solution after 100 cycles using a GC-DNA
electrode and bare GC electrode. SO is represented by well-
defined peaks in the voltammogram with higher currents
using the GC-DNA electrode. The current of the redox
couple of SO increased by about twofold, which indicates
that by immobilizing DNA on the GC electrode, the DNA
interaction with SO is enriched. The long-term response in
the SO solution showed higher peak currents using the
modified electrode, which reached maximum values after
100 cycles, with reduction and oxidation peak currents about
1.5 and 1.2 times higher for peaks c2 and a2, respectively,
compared to those obtained using the bare electrode.

In the cyclic voltammograms of SO using the GC-DNA
and GC electrodes (Fig. 3), the formal potential of SO at the
GC-DNA electrode, E0′surf, was −560 mV. Thus, E0′surf
shifted by 20 (±2.2) mV to more negative potentials with
respect to E0′bulk. This shift indicates that the oxidized form
of SO interacts with DNA more strongly than the reduced
form. However, the peak separation of the redox transition
of SO is not altered using GC-DNA electrode, indicating
that the heterogeneous charge transfer kinetics is not altered
on the modified surface. The negative difference between
the values of E0′surf and E0′bulk also revealed that the
electrostatic attractions between SO and DNA, in the long
run, overcame the intercalative attractions and stacking
interactions [34, 35]. In the range of 4.2 to 142 mM, when
the ionic strength of the solution was altered (by diluting of
Tris–HCl buffer or the addition of NaCl), the difference
between the formal potential of SO obtained using the bare
GC electrode and that using the GC-DNA electrode in the
same solutions (ΔE0′) decreases with increasing ionic
strength (Table 1). This indicates that the intercalative
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Fig. 2 Sampled consecutive
cyclic voltammograms using a
GC-DNA electrode: 200 μM SO
in 0.05 M Tris–HCl solution,
pH 7.4, potential sweep rate:
50 mV s−1. The cycle number is
indicated on each
voltammogram

Fig. 3 Main panel: cyclic vol-
tammograms of 200 μM SO
after 100 cycles in buffer solu-
tion at GC-DNA and bare GC
electrodes. The blank volta-
mmogram was recorded using
two electrodes. a Variations
of the reduction peak currents of
SO with the square root of
potential sweep rate using the
GC-DNA electrode in 200 μM
SO buffer solution. b Variations
of the reduction peak currents
of SO with the potential sweep
rate using the GC-DNA
electrode in 200 μM SO buffer
solution
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attractions between SO and DNA in the solution with
higher ionic strength are comparable to the electrostatic
interactions [35].

For SO on the GC-DNA electrode in the range of 5 to
1,000 mV s−1, peak current c1 has a linear relationship with
the square root of the potential sweep rate (Fig. 3a), but not
with the potential sweep rate (Fig. 3b). This linear
dependency of peak currents on the square root of the
potential sweep rate indicates that the redox transition of
SO at the GC-DNA electrode is under mass transport
control. Although it seems that SO is easily adsorbed onto
the GC-DNA electrode surface (Fig. 2), the results indicate
that a mass transport process occurred in the rate-limiting
step of the redox process of SO at the GC-DNA electrode
(see Fig. 3a). Moreover, this linear dependency is very
similar to that obtained using a bare GC electrode (Fig. 1,
inset). The same value was obtained for the product of
C×D1/2, where C and D are the concentration and the
diffusion coefficient, respectively, in the Randles–Sevcik
equation, using the two electrodes. From the cyclic
voltammograms depicted in Fig. 2, the concentration of
SO must be higher on the GC-DNA electrode surface
compared to that of the bulk of solution. Therefore, the
diffusion coefficient of SO must be lower when using the
GC-DNA electrode, because the C×D1/2 product remains
the same. Because the mass transfer process is not target-
surface-dependent, it can be concluded that mass transport
occurs by diffusion in the thin layer of swollen DNA on the
electrode surface. Thus, the concentration of SO is higher
on the DNA-layer/solution interface, due to the interaction
of DNA with SO, and SO diffuses through the DNA layer.
The electron transfer process occurs in the DNA helix via
electron/hole jumping through guanine bases that are
parallel to the helix axis [36, 37]. However, the adsorption
of the DNA on the GC surface via the interaction of
exposed bases and/or external phosphate groups is random
and thus cannot form the required regular network of
parallel conducting wires.

After continuous potential sweeps (cyclic voltammo-
gram with the highest peak currents depicted in Fig. 2), the
currents of oxidation and reduction of SO on the GC-DNA
electrode reached constant values. The electrode was rinsed
rapidly with water and buffer solution and placed immedi-
ately in the SO-free solution, and consecutive cyclic
voltammograms were then recorded (data not shown). The
redox peaks became gradually lower, until constant but low
values were achieved. This indicates the gradual dissocia-
tion of SO from DNA on the electrode surface into the SO-
free solution. Time dependence of the cathodic peak current
c2 (for SO bound to the double helical DNA) on the
electrode surface obtained in the SO-free solution is given
in Fig. 4. The logarithm of the reduction peak current
depends linearly on the dissociation time, illustrating that
the dissociation of SO obeys first-order reaction kinetics.
The dissociation rate constant for SO was 5.67×10−5 s−1,
with a half-time of 3.4 h. The dissociation of SO bound to
the electrode surface can be expressed by first-order
reaction kinetics as follows:

GC � DNA� SO!kd GC � DNAþ SO ð1Þ
Considering the Nernst equations for reversible redox

reactions of free and bound species of SO (Scheme 1), the
equal i ty of thermodynamic potentials and the
corresponding equilibrium constants for the binding of
each oxidation state to the DNA layer can be expressed as
follows [35, 38]:

ΔE0 0 ¼ E0 0
surf � E0 0

bulk ¼ RT=nF lnðKred=KoxÞ ð2Þ

Table 1 Dependency of the formal potential difference of the second
transition of SO (the difference between the formal potential of SO
obtained using GC and GC-DNA electrodes in the same solutions)
with ionic strength of the solution

Ionic strength (M) ΔE0′ (mV)

0.0042 −36 (±2.1)
0.0126 −31 (±1.7)
0.0252 −29 (±2.6)
0.042 −20 (±2.2)
0.047 −17 (±2.4)
0.052 −16 (±1.9)
0.062 −15 (±2.0)
0.092 −14 (±2.4)
0.142 −13 (±2.2)

y = -5.67E-05x - 1.21E+01
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Fig. 4 Time variation of the logarithm of the second cathodic peak
currents of SO bound to the GC-DNA electrode surface in SO-free
buffer solution. When the current of the second reduction peak of SO
reached its maximum value after 100 continuous cyclic voltammo-
grams, the SO-bound GC-DNA electrode was rinsed rapidly with
water and buffer solution and placed immediately in the buffer
solution with no SO. Then, consecutive cyclic voltammograms were
recorded. Each point is the logarithm of the time-dependent reduction
peak current of SO bound to GC-DNA electrode in SO-free solution
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where R is the universal constant of gases, F is the Faraday
constant, and T is the absolute temperature. For a limiting
shift of −20 (±2.2) mV, a ratio of Kox/Kred=2.2 for SO was
obtained. This ratio indicates that the interaction of the
oxidized form of SO with the GC-DNAwas more than two
times stronger than that of the reduced form.

The affinity of SO for the DNA-modified surface was
determined using chronocoulometry. The binding isotherm
for SO, the relationship between the coulometric charge for
SO bound to the GC-DNA electrode and its bulk
concentration, is presented in Fig. 5. These data are
described by Langmuir’s model using the following
equation [39]:

Cbulk
�
Γads ¼ Cbulk

�
Γmax þ 1= KΓmaxð Þ ð3Þ

where Cbulk and Γads are the concentrations of SO in the bulk
of the solution and adsorbed at the surface and K and Γmax

are the surface-binding constant and surface maximum
binding for SO, respectively. The good fit obtained with
this model is represented in the inset of Fig. 5, which
confirms the independent noncooperative binding sites for
SO on the DNA double helix, and gives K=5.8×104 L mol−1

and Γmax=9.7×10
−12 mol cm−2.

Conclusion

We characterized the electrochemical behavior of SO in
Tris–HCl buffer, pH 7.4, and the interaction between
double helical DNA as a film adsorbed onto a GC surface
and SO molecules using electrochemical methods. The

Scheme 1 Illustration of the process of the dissociation of SO, where
SO (ox) and SO (red) represent the oxidized and reduced forms of the
redox species, respectively. The subscripts bulk, film, bulk, and film,
surf represent the species in the bulk of the solution, the species in the
bulk of the DNA film, and the species bound to the electrode surface,
respectively; Kox and Kred are the corresponding binding constants for
the oxidized and reduced forms of the redox species, respectively
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Fig. 5 Main panel: a binding
isotherm for SO: plot of surface
adsorption charge for SO to GC-
DNA electrode vs concentration
of SO in solution. Each point
was obtained from potentiostatic
chronocoulometric measure-
ments after corrections for
charging currents by measure-
ments in SO-free solutions and
Cottrellian currents. The poten-
tial was stepped from open
circuit to −615 mV for 100 s.
Inset: plot of Cbulk/Γads vs Cbulk

for the SO–DNA binding iso-
therm (main panel). The
adsorbed concentrations of SO
were calculated from Faraday’s
law
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redox transition of SO is controlled by diffusion in the bulk
of the solution. Furthermore, the DNA-modified GC
electrode is a valuable tool in the examination of the redox
behavior of a species within the DNA environment. The
electrochemistry of DNA-modified surfaces provides a
convenient method to determine equilibrium binding
parameters of redox-active species. When using the DNA-
modified electrode, the formal potential of redox-active
species (as the mid peak potential) shifts to more negative
potentials. Binding of SO to DNA can be described with a
Langmuir isotherm deduced from coulometric charges for
SO–DNA binding. The binding constant of SO to DNA, the
dissociation of the species bound to DNA, and the ratio of
binding constant for the oxidized vs reduced forms of SO
were obtained using this method.
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